Name: Date:

Do Now

- 1. How long is your writing utensil in inches?
- 2. How long is your writing utensil in centimeters?

- 3. Did you get the same answer to #1 and #2? How is it possible that the length of a writing utensil can be represented using two different numbers?
- 4. Can you give another example of how we can measure the same thing in two different ways and get different answers?

Name: Date:

LOGS & Scale

Required Materials: LOG 2, LOG 4, LOG 8, LOG 10, LOG 16, LOG 32, LOG 40, LOG 64, and LOG 100

<u>Part I</u>: To right is what we call a "Log Base 2" ruler, typically written as " Log_2 " ruler. We refer to the subscript (the small number) as the base. You use it just like a normal ruler: you line up the bottom of your LOG with the zero and measure the height by reading the number off the ruler.

 What is the measure of a Log 2 on the Log₂ ruler? (Ignore the nub that connects LOGs when measuring them.)

This can be written this using the following notation: $Log_2 2 =$ _____

2. What is the measure of a Log 4 on the Log_2 ruler?

This can be written this using the following notation: $Log_2 4 =$ _____

3. What is the measure of a Log 8 on the Log_2 ruler?

This can be written this using the following notation: $Log_2 8 =$ _____

- 4. What is the measure of a Log 16 on the Log_2 ruler? Log_2 16 = ____
- 5. What is the measure of a Log 32 on the Log_2 ruler? Log_2 32 = ____
- 6. What is the measure of a Log 10 on the Log₂ ruler? Log₂ $10 = _$ (*It's okay to estimate if you have to*)
- 7. What is the measure of a Log 40 on the Log₂ ruler? Log₂ 40 = _____ (*It's okay to estimate if you have to*)
- 8. Which numbers measured out to whole numbers? Which numbers didn't? What kinds of numbers are easiest to measure using a Log₂ ruler?
- 9. Give an example of at least two additional numbers that would measure out to a whole number using a Log₂ ruler:

Give an example of at least two numbers that would NOT measure out to a whole number using a Log_2 ruler:

Part II: To right is what we call a "Log Base 10" ruler typically written as "Log "ruler. We	Log ₁₀ Ruler
refer to the subscript (the small number) as the base. You use it just like a normal ruler: you line up the bottom of your LOG with the zero and measure the height by reading the number off the ruler.	
10. What is the measure of a Log 10 on the Log_{10} ruler?	_
This can be written this using the following notation: $\log_{10} 10 =$	2.5
11. What is the measure of a Log 100 on the Log_{10} ruler?	-
This can be written this using the following notation: $Log_{10} 100 = $	
This can also be written as: $\log_{10} 10^2 = $	
12. Even though we don't have one, what would be the measure of LOG 1000 on the Log_{10} ruler? $Log_{10} 1000 = Log_{10} 10^3 = $	7
13. Even though we don't have one, what would be the measure of LOG 10000 on the Log_{10} ruler? $Log_{10} 10000 = $	-
14. What is the measure of a Log 2 on the Log_{10} ruler? $\text{Log}_{10} 2 = _$ (<i>It's okay to estimate if you have to</i>)	1.5
15. What is the measure of a Log 16 on the Log_{10} ruler? Log_{10} 16 =	Ŧ
16. What is the measure of a Log 40 on the Log_{10} ruler? $Log_{10} 40 = $	-
17. Which numbers measured out to whole numbers? Which numbers didn't? What kinds of numbers are easiest to measure using a Log ₁₀ ruler?	
18. Give an example of at least two additional numbers that would measure out to a whole number using a Log ₁₀ ruler:	
Give an example of at least two numbers that would NOT measure out to a whole number using a Log_{10} ruler:	0.5

Part III: Generalizing

19. Arguments that are powers of _____ will measure out to be whole numbers on a Log_2 ruler.

- 20. Arguments that are powers of _____ will measure out to be whole numbers on a Log₁₀ ruler.
- 21. Arguments that are powers of _____ will measure out to be whole numbers on a Log_n ruler.
- 22. Vocabulary:

Part IV: Practice & Application

23. $\log_{10} 10 = $	31 . Log ₅ 5 ⁴⁵⁸ =
24. $\log_{10} 10^5 = $	32. $\log_5 5^2 = $
25. $\log_2 2^5 = $	33 . Log ₅ 25 =
26. $\log_2 2^{18} = $	34 . Log ₅ 125 =
27. Log ₁₀ 100000 =	35 . Log ₃ 9 =
28 . Log ₂ 128 =	36 . Log ₃ 27 =
29. Log ₅ 5 =	37 . Log ₇ 49 =
30. $\log_5 5^8 = $	38 . Log ₄ 64 =

Part V: More Challenging Questions

39. $\log_x x = $	42. $\log_2 4^3 = _$
40. $\log_{10} 10^{4.5} = $	43. $\log_e e^{rt} = $
41. $\log_{Q} Q^{6} = $	44. $\log_{10} 10^{\log_{10} 10} = $

45. Describe in words how you would build or draw a Log_5 ruler if you were given a Log 5 piece.