Name:
Date:
Do Now

1. Find a number that equals the same quantity when added to itself as it does when multiplied by itself.

2. Find all such numbers that exist and, if possible, provide some justification as to why you believe you have listed them all.
Adding LOGs

Required Materials: 3 x LOG 2, 2 x LOG 4, LOG 8, LOG 5, LOG 10, LOG 16 and LOG 20

Directions: Using your FiCycle LOGS, explore what happens when you add LOGs by linking them end to end and seeing what LOGs have the same height. You can compare a sum of LOGs to another by placing two stacks of linked LOGs side by side.

Part I: Discovering LOG Properties
1. What LOG has the same height as linking one LOG 2 with another LOG 2?
 This can be written this using the following notation: LOG 2 + LOG 2 = LOG ____

2. What LOG has the same height as linking one LOG 4 and one LOG 4?
 This can be written this using the following notation: LOG 4 + LOG 4 = LOG ____

3. What LOG has the same height as linking one LOG 5 and one LOG 2?
 This can be written this using the following notation: LOG 5 + LOG 2 = LOG ____

4. Someone in class is confused and doesn’t understand how LOG 2 + LOG 2 + LOG 2 = LOG 8. Describe how you could show that it is true using LOGS.

Before moving on to Part II make sure everyone in your group has the same answers to the above problems.

Part II: Applying knowledge
5. LOG 5 + LOG 4 = LOG 2 + LOG ____

6. LOG 2 + LOG ____ = LOG 4 + LOG 4

7. LOG 2 + LOG 10 = LOG 2 + LOG ____ + LOG 5

8. LOG (2 x 4) = LOG 2 + LOG ____

9. LOG 10 = LOG 2 + LOG ____

10. Betsy incorrectly thinks that LOG 4 + LOG 2 = LOG 6. What is her mistake? How could you show her that she has made an error using LOGS?
Part III: Generalizing

11. Look back at your answers to Part I. What’s the pattern? Is it possible to add logs even if you don’t have them in front of you? In your own words, what is the rule or pattern for adding logs?

12. Use your rule to determine: \(\log 2 + \log 8 = \log \)____

13. Describe the pattern using variables: \(\log A + \log B = \) ____________

Before moving on to Part IV make sure everyone in your group understands Part III.

Part IV: Practice & Application

14. \(\log 3 + \log 4 = \log \)____

15. \(\log 5 + \log 10 = \log \)____

16. \(\log 10 + \log 20 = \)

17. \(\log 7 + \log 8 = \)

18. \(\log 1 + \log 2 + \log 3 + \log 4 = \)

19. \(\log 7 + \log 10 = \)

Part V: Working Backwards. You can use the same pattern you discovered to work backwards!

Use the pattern you discovered to work backwards and express each \(\log \) as the sum of two other \(\log s \): For example: \(\log 16 = \log 4 + \log 4 \) (for some problems there is more than one correct response)

20. \(\log (2\cdot2) = \log \)____ + \(\log \)____

21. \(\log (2\cdot4) = \log \)____ + \(\log \)____

22. \(\log (5\cdot4) = \log \)____ + \(\log \)____

23. \(\log 20 = \log \)____ + \(\log \)____

24. \(\log 2x = \log \)____ + \(\log \)____

25. \(\log 5x = \log \)____ + \(\log \)____

26. \(\log (x \cdot x) = \log \)____ + \(\log \)____

27. \(\log xy = \log \)____ + \(\log \)____

28. Generalize: Describe the pattern using variables: \(\log AB = \log \)____ + \(\log \)____
Part VI: More Challenging Questions. Express each sum as one \(\log \).

29. \(\log 0.5 + \log 8 = \)

30. \(\log \frac{1}{2} + \log \frac{1}{4} = \)

31. \(\log 24 = \log 6 + \log \)

32. \(\log 16 = \log 2 + \log \)

33. \(\log 56 = \log 8 + \log \)

34. \(\log 3^3 + \log 3^5 = \)

35. \(\log x^3 + \log x^5 = \)